
GDPR Compliance: Capturing User Consent

Addendum for comScore Library Implementations
document version: 1.4.0; released on June 7, 2018

for further information, please contact:

comScore, Inc.

Tag Support

+1 866 276 6972

DOCUMENT VERSION 1.4.0

Contents

Introduction . 3

1 Android . 4

1.1 Determine Library Version . 4

1.2 Include User Consent with Version 5 Library . 4

1.3 Include User Consent with Version 3 Library . 5

1.4 Update the User Consent Value . 5

2 iOS, tvOS and watchOS . 6

2.1 Determine Library Version . 6

2.2 Locate Library Configuration Code Statements . 6

2.3 Include User Consent with Version 5 Library . 7

2.4 Include User Consent with Version 3 Library . 7

2.5 Update the User Consent Value . 8

3 JavaScript (web or OTT) . 9

3.1 Determine Implementation Type . 9

3.2 Include User Consent with Application Tag . 9

3.3 Include User Consent with 'stand-alone' Streaming Tag . 10

3.4 Include User Consent with 'stand-alone' Reduced Requirements Streaming Tag 10

3.5 Update the User Consent Value . 11

4 ActionScript3/AIR . 12

5 Roku SceneGraph and BrightScript . 13

6 Roku C++ . 15

7 Cordova . 16

8 Unity . 17

9 Xamarin . 18

9.1 Determine Library Version . 18

9.2 Include User Consent with Version 2 Library . 18

9.3 Include User Consent with Version 1 Library . 18

9.4 Update the User Consent Value . 19

10 Windows, Windows Phone and Xbox . 20

11 Confirm User Consent is Collected . 21

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 2 OF 21

Introduction

The General Data Protection Regulation (GDPR) is a new European Union (EU) law that has global impact as it introduces new

rules for the governance of personal data, such as a requirement to capture User Consent. This addendum document explains

the steps to implement collection of User Consent for Audience Research purposes for publishers with an existing

implementation of a comScore library.

About the instructions in this document...

This document contains instructions for multiple versions of the available comScore libraries. For each platform in use, please

make sure to confirm the comScore library version — if applicable — in your application project source code and then execute

the implementation steps to collect User Consent for that particular version.

Any questions about the instructions, the comScore libraries, code changes, the impact on the collected data or differences

between the examples in this documentation and a publisher's environment can be addressed to comScore TagSupport and/or a

comScore client account representative.

comScore collects data through the use of name/value pairs, typically called ‘labels’ in comScore tagging implementation

documents. Data collection is autonomous and controlled by the comScore libraries, influenced by library API method calls in the

application project source code.

To collect User Consent for Audience Research purposes a publisher must add label cs_ucfr to the comScore library

configuration code statements as a Persistent Label. This will cause the label and its value to be persisted through the application

run and included by the comScore library in all collected data transmissions. In this process the publisher should not change

any other configuration settings.

The required values for the cs_ucfr user consent label are:

Label cs_ucfr values for collecting User Consent

Value Interpretation Usage

0 User has not given consent
The publisher uses this value to indicate the user has been asked for consent

where the user did not give consent to collect data for Audience Research purposes

1 User has given consent
The publisher uses this value to indicate the user has been asked for consent

where the user has given consent to collect data for Audience Research purposes

About including label cs_ucfrcs_ucfr when not collecting User Consent or when the User Consent value is unknown…

If consent is not collected for a user, then do not populate label cs_ucfr.

If the User Consent value is not known when the comScore library is configured and started, then do not populate label

cs_ucfr as part of the comScore library configuration. Instead, populate label cs_ucfr as a Persistent Label as soon as the

User Consent value is known and subsequently notify the comScore library of a Hidden Event where needed as per the Update

the User Consent Value instructions for each of the available comScore libraries.

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 3 OF 21

1 Android

There are two major versions of comScore library for Android in circulation: the current version 5 and the previous version 3.

1.1 Determine Library Version

The comScore library version can be determined from the configuration code statements required for all implementations.

Determine Android library version

Version Appearance / Characteristics

Version 5

The configuration code statements look like:

11. PublisherConfigurationPublisherConfiguration myPublisherConfig = newnew PublisherConfigurationPublisherConfiguration.BuilderBuilder()

12. .publisherId("1234567") // Provide your Publisher ID here.

13. .publisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

14. .build();

15. AnalyticsAnalytics.getConfiguration().addClient(myPublisherConfig);

Version 3

The configuration code statements look like:

11. comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret

here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

1.2 Include User Consent with Version 5 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the persistentLabels

configuration setting needs to be added (or modified) on the PublisherConfiguration. This configuration setting accepts

persistent labels as a HashMap of which the key/value pairs represent label name/value pairs. For example, assuming the user

has given consent, the aforementioned configuration code statements would be changed as follows:

11. HashMapHashMap<StringString,StringString> labels = newnew HashMapHashMap<StringString,StringString>();

12. labels.put("cs_ucfr", "1");

13. PublisherConfigurationPublisherConfiguration myPublisherConfig = newnew PublisherConfigurationPublisherConfiguration.BuilderBuilder()

14. .publisherId("1234567") // Provide your Publisher ID here.

15. .publisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

16. .persistentLabels(labels)

17. .build();

18. AnalyticsAnalytics.getConfiguration().addClient(myPublisherConfig);

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 4 OF 21

1.3 Include User Consent with Version 3 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the setLabels configuration API method. With this API method persistent labels are

provided as a HashMap of which the key/value pairs represent label name/value pairs. For example, assuming the user has given

consent, the aforementioned configuration code would be changed as follows:

11. HashMapHashMap<StringString,StringString> labels = newnew HashMapHashMap<StringString,StringString>();

12. labels.put("cs_ucfr", "1");

13. comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

14. comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

15. comScore.setLabels(labels);

1.4 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

With Version 5 Library

41. // Provide your Publisher ID in the getPublisherConfiguration() call.

42. AnalyticsAnalytics.getConfiguration().getPublisherConfiguration("1234567").setPersistentLabel("cs_ucfr", consentValue);

43. AnalyticsAnalytics.notifyHiddenEvent();

With Version 3 Library

41. comScore.setLabel("cs_ucfr", consentValue);

42. comScore.hidden();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 5 OF 21

2 iOS, tvOS and watchOS

There are two major versions of comScore libraries for iOS, tvOS and watchOS in circulation: the current version 5 and the

previous version 3.

2.1 Determine Library Version

The comScore library version can be determined from the reference to the singleton object used in code statements in the

implementation.

Determine iOS, tvOS or watchOS library version

Version Appearance / Characteristics

Version 5 The code uses references to SCORAnalytics.

Version 3 The code uses references to CSComScore.

2.2 Locate Library Configuration Code Statements

To collect User Consent the comScore library configuration code statements need to be changed. The following table shows the

configuration code statements required for all implementations, which can help to locate the configuration code statement in the

application project source code.

Locate iOS, tvOS or watchOS library configuration code statements

Version Appearance / Characteristics

Version 5

For Projects using Objective-C

11. SCORPublisherConfigurationSCORPublisherConfiguration *myPublisherConfig = [SCORPublisherConfigurationSCORPublisherConfiguration

publisherConfigurationWithBuilderBlock:^(SCORPublisherConfigurationBuilderSCORPublisherConfigurationBuilder *builder) {

12. builder.publisherId = @"1234567"; // Provide your Publisher ID here.

13. builder.publisherSecret = @"7b94840eb66b17e61c3d2f909c3a1163"; // Provide your Publisher Secret

here.

14. }];

15. [[SCORAnalyticsSCORAnalytics configuration] addClientWithConfiguration:myPublisherConfig];

For Projects using Swift

11. let myPublisherConfig = SCORPublisherConfigurationSCORPublisherConfiguration(builderBlock: { builder in

12. builder?.publisherId = "1234567" // Provide your Publisher ID here.

13. builder?.publisherSecret = "7b94840eb66b17e61c3d2f909c3a1163" // Provide your Publisher Secret

here.

14. })

15. SCORAnalyticsSCORAnalytics.configuration().addClientWithConfiguration(myPublisherConfig)

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 6 OF 21

Version Appearance / Characteristics

Version 3

The configuration code statements look like:

For Projects using Objective-C

11. [CSComScoreCSComScore setCustomerC2:@"1234567"]; // Provide your Publisher ID here.

12. [CSComScoreCSComScore setPublisherSecret:@"7b94840eb66b17e61c3d2f909c3a1163"]; // Provide your Publisher

Secret here.

For Projects using Swift

11. CSComScoreCSComScore.customerC2 = "1234567" // Provide your Publisher ID here.

12. CSComScoreCSComScore.publisherSecret = "7b94840eb66b17e61c3d2f909c3a1163" // Provide your Publisher Secret

here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

2.3 Include User Consent with Version 5 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the persistentLabels

configuration setting needs to be added (or modified) on the SCORPublisherConfiguration. This configuration setting

accepts persistent labels as a Dictionary of which the key/value pairs represent label name/value pairs. For example,

assuming the user has given consent, the aforementioned configuration code would be changed as follows:

For Projects using Objective-C

11. SCORPublisherConfigurationSCORPublisherConfiguration *myPublisherConfig = [SCORPublisherConfigurationSCORPublisherConfiguration

publisherConfigurationWithBuilderBlock:^(SCORPublisherConfigurationBuilderSCORPublisherConfigurationBuilder *builder) {

12. builder.publisherId = @"1234567"; // Provide your Publisher ID here.

13. builder.publisherSecret = @"7b94840eb66b17e61c3d2f909c3a1163"; // Provide your Publisher Secret here.

14. builder.persistentLabels = @{ @"cs_ucfr": @"1" }

15. }];

16. [[SCORAnalyticsSCORAnalytics configuration] addClientWithConfiguration:myPublisherConfig];

For Projects using Swift

11. let myPublisherConfig = SCORPublisherConfigurationSCORPublisherConfiguration(builderBlock: { builder in

12. builder?.publisherId = "1234567" // Provide your Publisher ID here.

13. builder?.publisherSecret = "7b94840eb66b17e61c3d2f909c3a1163" // Provide your Publisher Secret here.

14. builder?.persistentLabels = ["cs_ucfr": "1"]

15. })

16. SCORAnalyticsSCORAnalytics.configuration().addClient(with:myPublisherConfig)

2.4 Include User Consent with Version 3 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the setLabels configuration API method. With this API method persistent labels are

provided as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the user has

given consent, the aforementioned configuration code statements would be changed as follows:

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 7 OF 21

For Projects using Objective-C

11. [CSComScoreCSComScore setCustomerC2:@"1234567"]; // Provide your Publisher ID here.

12. [CSComScoreCSComScore setPublisherSecret:@"7b94840eb66b17e61c3d2f909c3a1163"]; // Provide your Publisher Secret here.

13. [CSComScoreCSComScore setLabels:@{ @"cs_ucfr": @"1" }];

For Projects using Swift

11. CSComScoreCSComScore.customerC2 = "1234567" // Provide your Publisher ID here.

12. CSComScoreCSComScore.publisherSecret = "7b94840eb66b17e61c3d2f909c3a1163" // Provide your Publisher Secret here.

13. CSComScoreCSComScore.labels = ["cs_ucfr": "1"]

2.5 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

With Version 5 Library

For Projects using Objective-C

41. // Provide your Publisher ID in the publisherConfigurationWithPublisherId call.

42. [((SCORClientConfigurationSCORClientConfiguration *) [[SCORAnalyticsSCORAnalytics configuration] publisherConfigurationWithPublisherId:@"1234567"])

setPersistentLabelWithName:@"cs_ucfr" value:consentValue];

43. [SCORAnalyticsSCORAnalytics notifyHiddenEvent];

For Projects using Swift

41. // Provide your Publisher ID in the publisherConfigurationWithPublisherId() call.

42. SCORAnalyticsSCORAnalytics.configuration().publisherConfiguration(withPublisherId:"1234567").setPersistentLabelWithName("cs_ucfr",

value: consentValue)

43. SCORAnalyticsSCORAnalytics.notifyHiddenEvent()

With Version 3 Library

For Projects using Objective-C

41. [CSComScoreCSComScore setLabel:@"cs_ucfr" value:consentValue];

42. [CSComScoreCSComScore hidden];

For Projects using Swift

41. CSComScoreCSComScore.setLabel("cs_ucfr", consentValue)

42. CSComScoreCSComScore.hidden()

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 8 OF 21

3 JavaScript (web or OTT)

For applications developed with JavaScript source code as well as for media players used in traditional web pages — those

aimed at delivery to regular web browsers — comScore offers different solutions. Each of these solutions covers a specific type

of implementation, which needs to be identified first from the code statements that appear in the implementation.

3.1 Determine Implementation Type

The implementation type can be determined from the presence of specific references and/or code statements to create object

instances in the implementation.

Determine JavaScript library implementation type

Type Appearance / Characteristics

Application

Tag

The Application Tag is not used for implementations in traditional web pages. Implementations of this type will have code statements that use the

ns_.comScore reference.

In cases where tagging of video consumption is included, the implementation will also contain code statements that create Streaming Tag object

instances. Typically these Streaming Tag object instances are created without providing any arguments for their instantiation.

'stand-alone'

Streaming

Tag

For use in traditional web pages the Application is not used, meaning the implementation does not contain any references to ns_.comScore.

Instead, the implementation only uses Streaming Tag object instances which are created using any of the following example code statements

(1234567 is an example value for the Publisher ID):

varvar streamingAnalytics = newnew ns_.StreamingAnalyticsStreamingAnalytics({ publisherId: '1234567' });

varvar streamSense = newnew ns_.StreamSenseStreamSense({}, 'http://b.scorecardresearch.com/p?c1=2&c2=1234567');

'stand-alone'

Reduced

Requirements

Streaming

Tag

For use in traditional web pages the Application is not used, meaning the implementation does not contain any references to ns_.comScore.

Instead, the implementation only uses Reduced Requirements Streaming Tag object instances which are created using any of the following

example code statements:

varvar streamingAnalytics = newnew ns_.ReducedRequirementsStreamingAnalyticsReducedRequirementsStreamingAnalytics({ publisherId: '1234567' });

varvar myStreamingTag = newnew ns_.StreamingTagStreamingTag({ customerC2: '1234567' });

3.2 Include User Consent with Application Tag

To collect User Consent the comScore library configuration code statements need to be changed. For most publishers, the

configuration code statements required for all implementations will look as follows in the application project source code:

11. ns_.comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. ns_.comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the setLabels configuration API method. With this API method persistent labels are

provided as an Object of which the key/value pairs represent label name/value pairs. For example, assuming the user has given

consent, the aforementioned configuration code statements would be changed as follows:

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 9 OF 21

11. ns_.comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. ns_.comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

13. ns_.comScore.setLabels({ "cs_ucfr": "1" });

In cases where tagging of video consumption is included, the code statements using the Streaming Tag do not require any

changes.

3.3 Include User Consent with 'stand-alone' Streaming Tag

Regardless of exactly what Streaming Tag object instance is created, for the purpose of collecting User Consent the cs_ucfr

label needs to be added to the persistent labels through the setLabels API method. With this API method persistent labels are

provided as an Object of which the key/value pairs represent label name/value pairs. For example, assuming the user has given

consent, the API method would be called on an instance as follows:

streamingAnalytics.setLabels({ "cs_ucfr": "1" });

3.4 Include User Consent with 'stand-alone' Reduced Requirements Streaming Tag

The Reduced Requirements Streaming Tag does not offer a way to set Persistent Labels. For the purpose of collecting User

Consent, the cs_ucfr label needs to be added to the metadata Object provided as argument in the API methods on the

Reduced Requirements Streaming Tag object instances.

With JavaScript library version below 4.1411.18 the metadata Object can only be provided as an argument to the

playContentPart notification method, as the playAdvertisement notification method does not accept any arguments. For

JavaScript library versions 4.1411.18 and higher the metadata Object can be provided as an argument to all playback

notification methods (i.e., playVideoContentPart, playAudioContentPart, playVideoAdvertisement and

playAudioAdvertisement all accept a metadata argument).

For example, assuming the user has given consent, the statements to set the metadata and provide it to the

playVideoContentPart notification method could look like this:

21. varvar metadata = {

22. "ns_st_pu": "ABC",

23. "ns_st_pr": "Modern Family",

24. "ns_st_ep": "Rash Decisions",

25. "ns_st_sn": "1",

26. "ns_st_en": "2",

27. "ns_st_st": "Hulu",

28. "ns_st_ge": "Comedy",

29. "ns_st_ce": "1",

30. "cs_ucfr": "1"

31. }

32. myStreamingTag.playVideoContentPart(metadata,

ns_.ReducedRequirementsStreamingAnalyticsReducedRequirementsStreamingAnalytics.ContentTypeContentType.LongFormOnDemandLongFormOnDemand);

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 10 OF 21

3.5 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the Application Tag or 'stand-alone' Streaming Tag has

been configured, or that the User Consent value is not known at the time the comScore library was configured and started, which

means label cs_ucfr was not populated in the comScore library configuration at that time.

About updating the User Consent value with 'stand-alone' Reduced Requirements Streaming Tag…

The mechanism for populating label cs_ucfr with the 'stand-alone' Reduced Requirements Streaming Tag already uses the

updated User Consent value and does not require any extra code statements to update the value.

With Application Tag

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. ns_.comScore.setLabel("cs_ucfr", consentValue);

42. ns_.comScore.hidden();

With 'stand-alone' Streaming Tag

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value at a later time. The updated

value will immediately be used by the 'stand-alone' Streaming Tag.

streamingAnalytics.setLabel("cs_ucfr", consentValue);

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 11 OF 21

4 ActionScript3/AIR

To collect User Consent with ActionScript3 and/or AIR applications the comScore library configuration code statements need to

be changed. For most publishers, the configuration code statements required for all implementations will look as follows in the

application project source code:

11. comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the setLabels configuration API method. With this API method persistent labels are

provided as an Object of which the key/value pairs represent label name/value pairs. For example, assuming the user has given

consent, the aforementioned configuration code statements would be changed as follows:

11. varvar labels = newnew ObjectObject();

12. labels["cs_ucfr"] = "1";

13. comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

14. comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

15. comScore.setLabels(labels);

4.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. comScore.setLabel("cs_ucfr", consentValue);

42. comScore.hidden();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 12 OF 21

5 Roku SceneGraph and BrightScript

Roku BrightScript applications can be developed in SceneGraph or with 'regular' BrightScript. To collect User Consent the

comScore library configuration code statements need to be changed. For most publishers, the configuration code statements

required for all implementations will look as follows in the application project source code:

For SceneGraph projects

11. cs.SetCustomerC2SetCustomerC2("1234567") // Provide your Publisher ID here.

12. cs.SetPublisherSecretSetPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

For 'regular' BrightScript projects

11. CSComScoreCSComScore().SetCustomerC2SetCustomerC2("1234567") // Provide your Publisher ID here.

12. CSComScoreCSComScore().SetPublisherSecretSetPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the SetLabels configuration API method. With this API method persistent labels are

provided as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the user has

given consent, the aforementioned configuration code statements would be changed as follows:

For SceneGraph projects

11. cs.SetCustomerC2SetCustomerC2("1234567") // Provide your Publisher ID here.

12. cs.SetPublisherSecretSetPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

13. cs.SetLabelsSetLabels({ "cs_ucfr": "1" })

For 'regular' BrightScript projects

11. CSComScoreCSComScore().SetCustomerC2SetCustomerC2("1234567") // Provide your Publisher ID here.

12. CSComScoreCSComScore().SetPublisherSecretSetPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

13. CSComScoreCSComScore().SetLabelsSetLabels({ "cs_ucfr": "1" })

5.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

For SceneGraph projects

41. cs.SetLabelSetLabel("cs_ucfr", consentValue)

42. cs.HiddenHidden()

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 13 OF 21

For 'regular' BrightScript projects

41. CSComScoreCSComScore().SetLabelSetLabel("cs_ucfr", consentValue)

42. CSComScoreCSComScore().HiddenHidden()

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 14 OF 21

6 Roku C++

To collect User Consent with Roku C++ applications the comScore library configuration code statements need to be changed.

For most publishers, the configuration code statements required for all implementations will look as follows in the application

project source code:

11. std::shared_ptr<PublisherConfigurationPublisherConfiguration> myPublisherConfig = PublisherConfigurationPublisherConfiguration::BuilderBuilder()

12. .publisherId("1234567") // Provide your Publisher ID.

13. .publisherSecret("9c455c81a801d3832a2cd281843dff30") // Provide your Publisher Secret.

14. .build();

15. AnalyticsAnalytics::getConfiguration()->addClient(myPublisherConfig);

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the persistentLabels

configuration setting needs to be added (or modified) on the PublisherConfiguration. This configuration setting accepts

persistent labels as a ComScore::StringPairArray of which the key/value pairs represent label name/value pairs. For

example, assuming the user has given consent, the aforementioned configuration code statements would be changed as follows:

11. StringPairArrayStringPairArray labels;

12. labels.setset("cs_ucfr", "1");

13. std::shared_ptr<PublisherConfigurationPublisherConfiguration> myPublisherConfig = PublisherConfigurationPublisherConfiguration::BuilderBuilder()

14. .publisherId("1234567") // Provide your Publisher ID.

15. .publisherSecret("9c455c81a801d3832a2cd281843dff30") // Provide your Publisher Secret.

16. .persistentLabels(labels)

17. .build();

18. AnalyticsAnalytics::getConfiguration()->addClient(myPublisherConfig);

6.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. // Provide your Publisher ID in the getPublisherConfiguration() call.

42. AnalyticsAnalytics.getConfiguration().getPublisherConfiguration("1234567").setPersistentLabel("cs_ucfr", consentValue);

43. AnalyticsAnalytics.notifyHiddenEvent();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 15 OF 21

7 Cordova

For Cordova applications the comScore Cordova plugin will be installed into the Cordova application development environment

and instrumented through JavaScript source code.

To collect User Consent the comScore library configuration code statements need to be changed. For most publishers, the

configuration code statements required for all implementations will look as follows in the application project source code:

11. ns_.comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. ns_.comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the setLabels configuration API method. With this API method persistent labels are

provided as an Object of which the key/value pairs represent label name/value pairs. For example, assuming the user has given

consent, the aforementioned configuration code statements would be changed as follows:

11. ns_.comScore.setCustomerC2("1234567"); // Provide your Publisher ID here.

12. ns_.comScore.setPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret here.

13. ns_.comScore.setLabels({ "cs_ucfr": "1" });

7.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. ns_.comScore.setLabel("cs_ucfr", consentValue);

42. ns_.comScore.hidden();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 16 OF 21

8 Unity

To collect User Consent with Unity applications the comScore library configuration code statements need to be changed. For

most publishers, the configuration code statements required for all implementations will look as follows in the application project

source code:

11. PublisherConfigurationPublisherConfiguration myPublisherConfig = PublisherConfigurationPublisherConfiguration.BuilderBuilder()

12. .PublisherIdPublisherId("1234567") // Provide your Publisher ID here.

13. .PublisherSecretPublisherSecret("9c455c81a801d3832a2cd281843dff30") // Provide your Publisher Secret here.

14. .BuildBuild();

15. AnalyticsAnalytics.ConfigurationConfiguration.AddClientAddClient(myPublisherConfig);

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the PersistentLabels

configuration setting needs to be added (or modified) on the PublisherConfiguration. This configuration setting accepts

persistent labels as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the

user has given consent, the aforementioned configuration code statements would be changed as follows:

11. PublisherConfigurationPublisherConfiguration myPublisherConfig = PublisherConfigurationPublisherConfiguration.BuilderBuilder()

12. .PublisherIdPublisherId("1234567") // Provide your Publisher ID here.

13. .PublisherSecretPublisherSecret("9c455c81a801d3832a2cd281843dff30") // Provide your Publisher Secret here.

14. .PersistentLabelsPersistentLabels(newnew DictionaryDictionary<stringstring, stringstring> { { "cs_ucfr", "1" } })

15. .BuildBuild();

16. AnalyticsAnalytics.ConfigurationConfiguration.AddClientAddClient(myPublisherConfig);

8.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. // Provide your Publisher ID in the GetPublisherConfiguration() call.

42. AnalyticsAnalytics.ConfigurationConfiguration.GetPublisherConfigurationGetPublisherConfiguration("1234567").SetPersistentLabelSetPersistentLabel("cs_ucfr", consentValue);

43. AnalyticsAnalytics.NotifyHiddenEventNotifyHiddenEvent();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 17 OF 21

9 Xamarin

There are two major versions of comScore library for Xamarin in circulation: the current version 2 and the previous version 1.

9.1 Determine Library Version

The comScore library version can be determined from the configuration code statements required for all implementations.

Determine Xamarin library version

Version Appearance / Characteristics

Version 2

The configuration code statements look like:

11. varvar myPublisherConfig = PublisherConfigurationPublisherConfiguration.BuilderBuilder()

12. .PublisherIdPublisherId("1234567") // Provide your Publisher ID here.

13. .PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

14. .BuildBuild();

15. AnalyticsAnalytics.ConfigurationConfiguration.AddClientAddClient(myPublisherConfig);

Version 1

The configuration code statements look like:

11. comScore.AnalyticsAnalytics.InstanceInstance.CustomerC2CustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.AnalyticsAnalytics.InstanceInstance.PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your

Publisher Secret here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

9.2 Include User Consent with Version 2 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the PersistentLabels

configuration setting needs to be added (or modified) on the PublisherConfiguration. This configuration setting accepts

persistent labels as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the

user has given consent, the aforementioned configuration code statements would be changed as follows:

11. varvar myPublisherConfig = PublisherConfigurationPublisherConfiguration.BuilderBuilder()

12. .PublisherIdPublisherId("1234567") // Provide your Publisher ID here.

13. .PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163") // Provide your Publisher Secret here.

14. .PersistentLabelsPersistentLabels(newnew DictionaryDictionary<stringstring, stringstring> { { "cs_ucfr", "1" } })

15. .BuildBuild();

16. AnalyticsAnalytics.ConfigurationConfiguration.AddClientAddClient(myPublisherConfig);

9.3 Include User Consent with Version 1 Library

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the SetLabels configuration API method. With this API method persistent labels are

provided as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the user has

given consent, the aforementioned configuration code would be changed as follows:

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 18 OF 21

11. comScore.AnalyticsAnalytics.InstanceInstance.CustomerC2CustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.AnalyticsAnalytics.InstanceInstance.PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret

here.

13. comScore.AnalyticsAnalytics.InstanceInstance.SetLabelsSetLabels(newnew DictionaryDictionary<stringstring, stringstring> { { "cs_ucfr", "1" } });

9.4 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

With Version 2 Library

41. // Provide your Publisher ID in the GetPublisherConfiguration() call.

42. AnalyticsAnalytics.ConfigurationConfiguration.GetPublisherConfigurationGetPublisherConfiguration("1234567").SetPersistentLabelSetPersistentLabel("cs_ucfr", consentValue);

43. AnalyticsAnalytics.NotifyHiddenEventNotifyHiddenEvent();

With Version 1 Library

41. comScore.AnalyticsAnalytics.InstanceInstance.SetLabelSetLabel("cs_ucfr", consentValue);

42. comScore.AnalyticsAnalytics.InstanceInstance.HiddenHidden();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 19 OF 21

10 Windows, Windows Phone and Xbox

To collect User Consent with Windows applications — including applications for Windows Phone, Mobile, Xbox and Silverlight —

the comScore library configuration code statements need to be changed. For most publishers, the configuration code statements

required for all implementations will look as follows in the application project source code:

11. comScore.AnalyticsAnalytics.InstanceInstance.CustomerC2CustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.AnalyticsAnalytics.InstanceInstance.PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret

here.

Depending on individual publisher data collection needs other configuration settings might be included, but the appearance and

structure of these required configuration settings will be as shown above.

Regardless of exactly what configuration settings appear, for the purpose of collecting User Consent the cs_ucfr label needs to

be added to the persistent labels through the SetLabels configuration API method. With this API method persistent labels are

provided as a Dictionary of which the key/value pairs represent label name/value pairs. For example, assuming the user has

given consent, the aforementioned configuration code statements would be changed as follows:

11. comScore.AnalyticsAnalytics.InstanceInstance.CustomerC2CustomerC2("1234567"); // Provide your Publisher ID here.

12. comScore.AnalyticsAnalytics.InstanceInstance.PublisherSecretPublisherSecret("7b94840eb66b17e61c3d2f909c3a1163"); // Provide your Publisher Secret

here.

13. comScore.AnalyticsAnalytics.InstanceInstance.SetLabelsSetLabels(newnew DictionaryDictionary<stringstring, stringstring> { { "cs_ucfr", "1" } });

10.1 Update the User Consent Value

It could happen that the User Consent value needs to be updated after the comScore library has been configured and started or

that the User Consent value is not known at the time the comScore library is configured and started, which means label cs_ucfr

was not populated in the comScore library configuration at that time.

In these cases label cs_ucfr must be populated as a Persistent Label with the appropriate value after the comScore library has

been started and the comScore library must be notified of a Hidden Event so comScore can collect the updated User Consent

value.

41. comScore.AnalyticsAnalytics.InstanceInstance.SetLabelSetLabel("cs_ucfr", consentValue);

42. comScore.AnalyticsAnalytics.InstanceInstance.HiddenHidden();

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 20 OF 21

11 Confirm User Consent is Collected

After changing the implementation as instructed in this document the collected data should contain label cs_ucfr with its

assigned value any time the comScore library transmits collected data and the User Consent value was known. The collected

data is transmitted as HTTP requests, which can be inspected with an HTTP proxy such as Fiddler or Charles Proxy.

The collected data will be transmitted to the host b.scorecardresearch.com(1) where the URL query string parameters of the

HTTP request should contain label cs_ucfr with its assigned value.

About confirming expected behavior...

As a good practice, it is advised that publishers confirm this expected behavior for each application that is tagged with the

comScore library.

(1) For secure transmissions using HTTPS the hostname will be sb.scorecardresearch.com.

GDPR Compliance: Capturing User Consent - Addendum for comScore Library Implementations

document version 1.4.0; © 2018 comScore, Inc. PAGE 21 OF 21

	Contents
	Introduction
	Android
	Determine Library Version
	Include User Consent with Version 5 Library
	Include User Consent with Version 3 Library
	Update the User Consent Value
	With Version 5 Library
	With Version 3 Library

	iOS, tvOS and watchOS
	Determine Library Version
	Locate Library Configuration Code Statements
	For Projects using Objective-C
	For Projects using Swift
	For Projects using Objective-C
	For Projects using Swift

	Include User Consent with Version 5 Library
	For Projects using Objective-C
	For Projects using Swift

	Include User Consent with Version 3 Library
	For Projects using Objective-C
	For Projects using Swift

	Update the User Consent Value
	With Version 5 Library
	For Projects using Objective-C
	For Projects using Swift

	With Version 3 Library
	For Projects using Objective-C
	For Projects using Swift

	JavaScript (web or OTT)
	Determine Implementation Type
	Include User Consent with Application Tag
	Include User Consent with 'stand-alone' Streaming Tag
	Include User Consent with 'stand-alone' Reduced Requirements Streaming Tag
	Update the User Consent Value
	With Application Tag
	With 'stand-alone' Streaming Tag

	ActionScript3/AIR
	Update the User Consent Value

	Roku SceneGraph and BrightScript
	For SceneGraph projects
	For 'regular' BrightScript projects
	For SceneGraph projects
	For 'regular' BrightScript projects
	Update the User Consent Value
	For SceneGraph projects
	For 'regular' BrightScript projects

	Roku C++
	Update the User Consent Value

	Cordova
	Update the User Consent Value

	Unity
	Update the User Consent Value

	Xamarin
	Determine Library Version
	Include User Consent with Version 2 Library
	Include User Consent with Version 1 Library
	Update the User Consent Value
	With Version 2 Library
	With Version 1 Library

	Windows, Windows Phone and Xbox
	Update the User Consent Value

	Confirm User Consent is Collected

